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Standard Tableaux and Modular Major Index
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Abstract. We provide simple necessary and sufficient conditions for the existence
of a standard Young tableau of a given shape and major index r mod n, for all r.
Our result generalizes the r = 1 case due essentially to Klyachko (1974) and proves
a recent conjecture due to Sundaram (2016) for the r = 0 case. A byproduct of the
proof is an asymptotic equidistribution result for “almost all” shapes. The proof uses a
representation-theoretic formula involving Ramanujan sums and normalized symmetric
group character estimates. Further estimates involving “opposite” hook lengths are
given which are well-adapted to classifying which partitions λ ` n have f λ ≤ nd for
fixed d.
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1 Introduction

Let λ ` n be an integer partition of size n, and let SYT(λ) denote the set of standard
Young tableaux of shape λ. Let maj T denote the major index of T ∈ SYT(λ), namely
the sum of all i for which i + 1 appears below i (in English notation). We are chiefly
interested in the counts

aλ,r := #{T ∈ SYT(λ) : maj T ≡n r}

where r is taken mod n. To avoid giving undue weight to trivial cases, we take n ≥ 1
throughout. Work due to Klyachko and, later, Kraskiewicz-Weyman, gives the following:

Theorem 1.1 ([5, Proposition 2], [6]). Let λ ` n and n ≥ 1. Then aλ,1 is positive except in the
following cases, when it is zero:

• λ = (2, 2) or λ = (2, 2, 2);

• λ = (n) when n > 1; or λ = (1n) when n > 2.

Indeed, the aλ,r have a natural interpretation as irreducible multiplicities as follows,
a result originally due to Kraskiewicz-Weyman. Let Cn be the cyclic group of order n
generated by the long cycle σn := (12 · · · n) ∈ Sn, let Sλ be the Specht module of shape
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λ ` n, and let χr : Cn → C× be the irreducible representation given by χr(σi
n) := ωri

n
where ωn is a fixed primitive nth root of unity and r ∈ Z/n. Let 〈−,−〉 denote the
standard scalar product for complex representations.

Theorem 1.2 (see [6, Theorem 1]). With the above notation, we have

〈Sλ, χr↑Sn
Cn
〉 = aλ,r = 〈χr, Sλ↓Sn

Cn
〉.

Moreover, aλ,r depends only on λ and gcd(n, r), i.e. if gcd(n, r) = gcd(n, s) then aλ,r = aλ,s.

Remark 1.3. Kraskiewicz-Weyman gave the first equality in Theorem 1.2, and the second
follows by Frobenius reciprocity. Klyachko [5, Proposition 2] actually determined which
Sλ contain faithful representations of Cn in agreement with Theorem 1.1. One may see
through a variety of methods that χr↑Sn

Cn
depends up to isomorphism only on gcd(r, n).

The manuscript [6] was long-unpublished, the delay being largely due to Klyachko
having already given a significantly more direct proof of their main application, relating
χ1↑Sn

Cn
to free Lie algebras, though we have no need of this connection. For a more modern

and unified account of these results, see [8, Theorems 8.8-8.12].

The following conjecture due to Sundaram was originally stated in terms of the
multiplicity of Sλ in 1↑Sn

Cn
.

Conjecture 1.4 ([13]). Let λ ` n and n ≥ 1. Then aλ,0 is positive except in the following cases,
when it is zero: n > 1 and

• λ = (n− 1, 1)

• λ = (2, 1n−2) when n is odd

• λ = (1n) when n is even.

Conjecture 1.4 is the r = 0 case of the following theorem, which is our main result.

Theorem 1.5. Let λ ` n and n ≥ 1. Then aλ,r is positive except in the following cases, when it
is zero: n > 1 and

• λ = (2, 2), r = 1, 3; or λ = (2, 2, 2), r = 1, 5; or λ = (3, 3), r = 2, 4;

• λ = (n− 1, 1) and r = 0;

• λ = (2, 1n−2), r =

{
0 if n is odd
n
2 if n is even;

• λ = (n), r ∈ {1, . . . , n− 1};
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• λ = (1n), r ∈
{
{1, . . . , n− 1} if n is odd
{0, . . . , n− 1} − {n

2} if n is even.

Equivalently, using Theorem 1.2, every irreducible representation appears in each χr↑Sn
Cn

or Sλ↓Sn
Cn

except in the noted exceptional cases.

Our main tool is the following well-known representation-theoretic formula. See
Section 2 for further discussion of its origins and a generalization. Let χλ(µ) denote the
character of Sλ at a permutation of cycle type µ. Write f λ := χλ(1n) = dim Sλ = # SYT(λ).

Theorem 1.6. Let λ ` n and n ≥ 1. For all r ∈ Z/n,

aλ,r

f λ
=

1
n
+

1
n ∑

`|n
` 6=1

χλ(`n/`)

f λ
c`(r)

where
c`(r) := µ

(
`

gcd(`, r)

)
φ(`)

φ(`/ gcd(`, r))

is a Ramanujan sum, µ is the classical Möbius function, and φ is Euler’s totient function.

We estimate the quotients in the preceding formula using the following result due to
Fomin and Lulov. A ribbon is a connected skew shape with no 2× 2 rectangles.

Theorem 1.7 ([2, Theorem 1.1]). Let λ ` n where n = `s. Suppose λ can be written as s
successive ribbons each of length `. Then

|χλ(`s)| ≤ s!`s

(n!)1/` ( f λ)1/`.

Theorem 1.7 is based on the following generalization of the hook length formula (the
` = 1 case), which seems less well-known than it deserves. For λ ` n, write c ∈ λ to mean
that c is a cell in λ. Further write hc for the hook length of c and write [n] := {1, 2, . . . , n}.

Theorem 1.8 ([2, Corollary 2.2]; see also [4, p. 2.7.32]). Let λ ` n where n = `s. Then

|χλ(`s)| =

∏
i∈[n]
i≡`0

i

∏
c∈λ

hc≡`0

hc
(1.1)

whenever λ can be written as s successive ribbons of length `, and 0 otherwise.
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We also give the following asymptotic uniform distribution result which largely
strengthens Theorem 1.5.

Theorem 1.9. Let λ ` n be a partition where f λ ≥ n5 ≥ 1. Then for all r,∣∣∣∣ aλ,r

f λ
− 1

n

∣∣∣∣ < 1
n2 .

In particular, if n ≥ 81, λ1 < n− 7, and λ′1 < n− 7, then f λ ≥ n5 and the inequality holds.

Indeed, the upper bound in Theorem 1.9 is quite weak and is intended only to convey
the flavor of the distribution of (aλ,r)

n−1
r=0 for fixed λ. One may use Roichman’s asymptotic

estimate [9] of |χλ(`s)|/ f λ to prove exponential decay in many cases. Moreover, one
typically expects f λ to grow super-exponentially, i.e. like (n!)ε for some ε > 0 (see [7] for
some discussion and a more recent generalization of Roichman’s result), which in turn
would give a super-exponential decay rate in Theorem 1.9. We have no need for such
refined statements and so have not pursued them further.

The rest of the paper is organized as follows. In Section 2 we discuss and generalize
Theorem 1.6. In Section 3, we use symmetric group character estimates and a new
estimate involving “opposite hook products,” Lemma 3.4, to deduce our main results,
Theorem 1.5 and Theorem 1.9. We have omitted proofs from this extended abstract. They
will appear in a forthcoming version of this article [14].

2 Generalizing the Main Formula

Variations on Theorem 1.6 have appeared in the literature numerous times in several
guises, sometimes implicitly (see [1, Théorème 2.2], [5, (7)], or [12, 7.88(a), p. 541]). In
this section we write out a precise and relatively general version of these results which
explicitly connects Theorem 1.6 to the well-known corresponding symmetric function
expansion due to H. O. Foulkes. Let ch denote the Frobenius characteristic map, and let
pλ denote the power symmetric function indexed by the partition λ.

Theorem 2.1 ([3, Theorem 1]). Suppose λ ` n ≥ 1 and r ∈ Z/n. In this case,

ch χr↑Sn
Cn
=

1
n ∑

`|n
c`(r)p(`n/`). (2.1)

The following straightforward result connects and generalizes Theorem 2.1 and
Theorem 1.6.
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Theorem 2.2. Let H be a subgroup of Sn, and let M be a finite-dimensional H-module with
character χM : H → C. Then

ch M↑Sn
H =

1
|H| ∑

µ`n
cµ pµ (2.2)

and, for all λ ` n,

〈M↑Sn
H , Sλ〉 = 1

|H| ∑
µ`n

cµχλ(µ), (2.3)

where
cµ := ∑

h∈H
τ(h)=µ

χM(h)

and τ(σ) denotes the cycle type of the permutation σ.

Theorem 2.2 is an immediate consequence of the induced character formula. Note
that (2.2) specializes to Theorem 2.1 and (2.3) specializes to Theorem 1.6 when M = χr.
In that case, the only possibly non-zero cµ arise from µ = (`n/`) for ` | n.

One may consider analogues of the counts aλ,r obtained by inducing other one-
dimensional representations of subgroups of Sn. Motivated by the study of so-called
higher Lie modules, there is a natural embedding of reflection groups Ca o Sb ↪→ Sab. A
classification analogous to Klyachko’s result, Theorem 1.1, was asserted for b = 2 by
Schocker [10, Theorem 3.4], though the “rather lengthy proof” making “extensive use of
routine applications of the Littlewood-Richardson rule and some well-known results from
the theory of plethysms” was omitted. By contrast, our approach using Theorem 2.2 may
be pushed through in this case using an appropriate generalization of the Fomin-Lulov
bound, Theorem 1.7, such as [7, Theorem 1.1], resulting in analogues of Theorem 1.5 and
Theorem 1.9. Our approach begins to break down when b is large relative to n = ab and
(2.3) has many terms. However, we have no current need for such generalizations and so
have not pursued them further.

3 Proof of the Main Result

We now summarize our proof of Theorem 1.5 and Theorem 1.9. We begin by giving
a sufficient condition in terms of upper bounds on symmetric group character ratios,
Lemma 3.1, which in turn reduces to a sufficient condition in terms of lower bounds
on f λ, Corollary 3.2. We then give an inequality between hook length products and
“opposite” hook length products, Lemma 3.4, from which one can classify λ for which
f λ < n3. Theorem 1.5 follows in almost all cases, with the remainder being handled by
brute force and case-by-case analysis. Theorem 1.9 is similar, except the bound f λ < n5 is
used.
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Lemma 3.1. Let λ ` n and d ∈ R. Suppose for all 1 6= ` | n where λ may be written as s := n/`
successive ribbons each of length ` that

|χλ(`s)|
f λ

≤ 1
ndφ(`)

. (3.1)

Then for all r ∈ Z/n, ∣∣∣∣ aλ,r

f λ
− 1

n

∣∣∣∣ < 1
nd .

Lemma 3.1 follows from Theorem 1.6. The following corollary to Lemma 3.1 follows
from Theorem 1.7 and Stirling’s approximation [11, (1.53)].

Corollary 3.2. Let λ ` n. If f λ ≥ n3 ≥ 1, then aλ,r 6= 0.

We next summarize techniques that are well-adapted to classifying λ ` n for which
f λ < nd for fixed d. We begin with a curious observation, Lemma 3.4, which we have not
been able to locate in the literature (though contrast it with [2, Theorem 2.3]).

Definition 3.3. Consider a partition λ = (λ1, . . . , λm) with λ1 ≥ λ2 ≥ · · · ≥ 0 as a set of
cells

λ = {(a, b) ∈ Z×Z : 1 ≤ b ≤ m, 1 ≤ a ≤ λb}.

Given a cell c = (a, b) ∈ λ ⊂ N×N, the opposite hook length hop
c at c is a + b− 1. For

instance, the unique cell in λ = (1) has opposite hook length 1, and the opposite hook
length increases by 1 for each north or east step (using French notation).

It is easy to see that ∑c∈λ hop
c = ∑c∈λ hc. On the other hand, we have the following.

Lemma 3.4. For all partitions λ,
∏
c∈λ

hop
c ≥∏

c∈λ

hc.

Moreover, equality holds if and only if λ is a rectangle.

Our proof of Lemma 3.4 involves considering contributions of the (co-)arm and (co-
)leg lengths of each cell. It would be interesting to find a more conceptual explanation
for Lemma 3.4, perhaps using representation theory. The appearance of rectangles is
particularly striking. Note, however, that n!/ ∏c∈λ hop

c need not be an integer. In any case,
we continue towards Theorem 1.5.

Definition 3.5. Define the diagonal preorder on partitions as follows. Declare λ .diag µ if
and only if for all i ∈ P,

#{c ∈ λ : hop
c ≥ i} ≤ #{d ∈ µ : hop

d ≥ i}.
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Note that .diag is reflexive and transitive, though not anti-symmetric, so the diagonal
preorder is not a partial order. A straightforward consequence of the definition is that

λ .diag µ ⇒ ∏
c∈λ

hop
c ≤ ∏

d∈µ

hop
d . (3.2)

Hooks are maximal elements of the diagonal preorder in a sense we next make precise.

Definition 3.6. Let λ ` n for n ≥ 1. The diagonal excess of λ is

N(λ) := |λ| − #{hop
c : c ∈ λ}.

For instance, λ = (3, 3) has opposite hook lengths ranging from 1 to 4, so N((3, 3)) =
6− 4 = 2.

Example 3.7. Let λ ` n be a hook. Consider the sequence (#{c ∈ λ : hop
c = i})∞

i=1
recording the number of cells with opposite hook lengths 1, 2, 3, . . .. This sequence is

(1, 2, 2, . . . , 2, 1, . . . , 1, 0, 0, . . .)

where there are N(λ) two’s and n− N(λ) non-zero entries. In particular, N(λ) + 1 ≤
n− N(λ), i.e. 2N(λ) + 1 ≤ n.

Proposition 3.8. Let λ ` n for n ≥ 1. Set

N :=

{
N(λ) if 2N(λ) + 1 ≤ n⌊

n−1
2

⌋
if 2N(λ) + 1 > n.

(3.3)

Then
λ .diag (n− N, 1N). (3.4)

In particular, if 2N(λ) + 1 ≤ n, then the hook (n− N(λ), 1N(λ)) is maximal for the diagonal
preorder on partitions of size n with diagonal excess N(λ).

Our proof of Proposition 3.8 is algorithmic. Each step of the algorithm goes up in the
diagonal preorder and the algorithm terminates at an appropriate hook. The following
corollary of Proposition 3.8 and Lemma 3.4 essentially gives a polynomial lower bound
on f λ in terms of the diagonal excess.

Corollary 3.9. Let λ ` n for n ≥ 1, and take N as in (3.3). For any 0 ≤ M ≤ N, we have

∏
c∈λ

hop
c ≤ (n−M)!(M + 1)!. (3.5)
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Indeed,

f λ ≥ 1
M + 1

(
n
M

)
. (3.6)

We now sketch the proof of Theorem 1.5, the proof of Theorem 1.9 being similar.
Theorem 1.5 follows from Corollary 3.2 except when f λ < n3. One may classify these
exceptional λ using the bound (3.6) from Corollary 3.9 for n sufficiently large as essentially
those λ with N(λ) ≤ 4. The result is twelve pairs of infinite families, namely the
concatenations (n−M)⊕ µ for µ ` M ≤ 4 and their conjugates. For example, one such
pair is {(n− 4, 3, 1)} and its conjugate. The five pairs with M = 4 all result in f λ ≥ n3

for n ≥ 34. The conclusion of Theorem 1.5 may be verified by hand for the remaining
seven families for n ≥ 15. One must then verify the conclusion of Theorem 1.5 for n ≤ 33,
which takes little time on modern computers.
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